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Abstract 

NVT Monte Carlo simulation results are presented for the forces between charged 
colloids within the primitive model for electrolytes. The calculations show that when 
charged colloids have a net dipole moment, a strong attraction can arise at short 
separations. The attractive force is not purely electrostatic; significant contributions 
follow from hard-sphere collisions between the electrolyte ions and the colloidal 
particles. In divalent electrolyte solutions, non-uniformly charged colloids show an 
oscillatory force profile as a function of separation, due to layering of electrolyte ions 
around the interacting colloids. 

Simulation results are compared to two analytical models derived from classical 
Debye-Hückel screened potentials. In the first model, contributions from charge-charge, 
dipole-dipole, and charge-dipole interactions are independently angle-averaged and then 
added to obtain the colloid-colloid potential. In the second model, the pair potential is 
obtained by simultaneously angle-averaging all interactions. 

Our results show that simultaneous angle-averaging of anisotropic interactions provides 
significant improvement over the commonly used additivity approximation. 

 

Key words: Monte Carlo simulation, dipolar charged colloids, potential of mean force, 

DLVO theory 

 

Introduction 
Interactions between electrically charged particles determine the essential properties of 

solutions containing latex particles, clays, or proteins [1-4]. Such colloidal solutions 
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appear in many industrial processes, in particular in biotechnology, and in the food, 

pharmaceutical, and cosmetics industries. 

Traditional theories consider the potential between charged colloids in solution as the 

isotropic interaction between particles characterized either by constant surface charge or 

by constant surface potential in a medium [1,5-8]. This approximation is satisfactory for 

describing highly symmetric colloids like synthetic latex or silica particles. However, 

many systems of industrial and biological interest, e.g. proteins, comprise charged 

colloidal particles with uneven charge distribution. Protein solubility can be affected by 

highly specific protein-protein interactions in the protein crystal [9]; because anisotropic 

interactions are required to fit the protein orientations in the crystal, it is likely that the 

protein-protein pair potential in the liquid phase is also anisotropic [4,10,11]. 

The effect of charge heterogeneity on colloid-colloid pair interactions has received 

considerable attention. For example, Yoon and Lenhoff [12] used a boundary-element 

method to compute the potential between a protein and a charged surface. Their results, 

in qualitative agreement with previous experimental reports [13], showed that 

ribonuclease A preferentially adsorbs onto a negatively charged surface with its active 

site facing the surface. Roush et al. [14] numerically solved the linearized Poisson-

Boltzmann equation for the electrostatic interaction between a surface and a charged 

sphere, observing an orientation-dependent potential energy. Grant [15] applied a 

boundary-element technique to study the interactions between proteins characterized by 

surface patchiness and charge fluctuations in electrolyte solutions. Accounting for non-

uniform charge effects yielded more consistent predictions for the effective Hamaker 

constant obtained from experimental osmotic second virial coefficients for protein 

solutions. Sader and Lenhoff [16] applied the superposition approximation to study the 

interaction between two non-uniformly charged colloidal particles and between one non-

uniformly charged particle and a surface. Their calculations reveal notable changes in the 

effective interaction potential due to charge heterogeneity. 

Approximating protein charge distribution by a dipole may provide a reasonable 

representation of charged-protein electrostatic interactions in aqueous solutions [17,18]. 

McClurg and Zukoski [19] used the linearized Poisson-Boltzmann equation to estimate 

the electrostatic interaction energy for two charged dipolar proteins. They provided 
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analytical expressions for the multipolar-expansion solution for the protein-protein 

interaction potential as a function of protein-protein orientation. They also provided 

approximate analytical expressions for such interactions where protein charge, protein 

size, and protein dipole moment are input parameters. They showed that electrostatic 

multipolar forces may be largely responsible for attractions between proteins even when 

they are like-charged. However, they did not provide a simple analytical expression for 

the angle-averaged potential of mean force between charged colloids with finite dipole 

moments. 

Toward a better understanding of the effect of non-uniform charge distribution of 

charged particles on the colloid-colloid potential of mean force, we have performed 

simulation calculations of the orientation-averaged interaction between anisotropic 

charged colloids in electrolyte solutions. We study colloids with the same net charge with 

or without a strong permanent dipole. Colloids without dipole moment carry only a net 

charge in their center of mass, whereas colloids with a dipole moment carry charged 

groups asymmetrically distributed within the particle. We consider colloids in aqueous 

solutions containing mono- or divalent electrolytes at two concentrations 

Limited to the conditions considered in our simulations, when charged colloids in 

solutions of finite-size monovalent or divalent electrolytes have no dipole, they show a 

repulsive force at all separations. However, when charged colloids bear a net dipole, the 

angle-averaged interaction can be strongly attractive. Further, when charged colloids 

have a dipole, the simulated colloid-colloid force profile in divalent electrolyte solution 

can be oscillatory due to layering of electrolyte ions around the interacting colloids 

We compare our simulated potentials of mean force to results from analytical theories. 

To date, models based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [20] 

have allowed a qualitative, and sometimes quantitative understanding of phenomena such 

as the stability of charged dispersions, the short-range liquid order observed in scattering 

experiments [21,22], and the fluid-crystal transition at low ionic strength [23]. The 

DLVO expression for the screened charge-charge interaction between colloids is used in 

two models considered here. Following Vilker et al. [24] and Phillies [25], Prausnitz and 

coworkers [17] reported isotropic expressions for protein-protein interaction potentials 

where the protein net dipole gives dipole-dipole attraction, and where protein net charge 
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and net dipole also give dipole-charge attractions. In that calculation, each contribution is 

computed separately by appropriate orientation averages; all the contributions are added 

to the DLVO term to obtain the pair potential of mean force. 

Separate orientation-averaging, however, is approximately valid only in systems with 

relatively weak coupling between the charge-dipole and the dipole-dipole interactions. It 

is not valid for colloids that simultaneously carry a strong dipole and a high net charge; 

such colloids are considered in this work. As pointed out by Lenhoff and coworkers [11], 

a correct theory must be based on simultaneous orientation-averaging of all electrostatic 

contributions. A recent analysis along these lines by Bratko et al. [26] indeed shows that 

the properly angle-averaged charge-dipole and dipole-dipole interaction is less attractive 

than that predicted from separate averaging. 

The simulations for charged dipole macroions presented here strongly support the 

above conclusion. 

 

Model and Simulation Details 
Canonical NVT Monte Carlo simulation was used following the algorithm proposed in 

our earlier works. [27,28]. Macroions and electrolytes are simulated using the primitive 

model for ionic solutions [29], augmented by a prescribed distribution of charged groups 

in the interior of the colloidal particles. The solution is described by an ensemble of hard 

spheres of different charge and size dispersed in a dielectric continuum whose 

permittivity corresponds to that of the solvent. 

The average force F between two aqueous colloids surrounded by small ions comprises 

three contributions: 

( ) ( ) ( ) ( )dF
d
r

d
ddF HS

N
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∂

∂
−
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    .                                                          (1) 

Angular brackets denote ensemble averages, d is the separation between two colloids, and 

riC is the distance between a small ion i and a colloid. Subscript C denotes a colloid. ϕij is 

the pair potential between ionic particles i and j separated by center-to-center distance lij: 
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where ε, ε0, σi and qi are respectively relative permittivity, permittivity of vacuum 

(ε0=8.854 10-12 As/Vm), diameter and charge of species i. 

In Eq. (1), the first term on the right-hand side is the electrostatic force between the two 

interacting colloids. The second term accounts for electrostatic forces exerted on the 

colloids by the electrolyte ions. As particles cannot overlap, this term contains no 

contribution from hard-core interactions. The third term represents the averaged force 

resulting from collisions between hard-core colloids and electrolyte ions calculated by 

Eq.(10) of ref. [28]. All terms are computed by appropriate averages over colloid-colloid 

angular orientations. 

According to the NVT ensemble, the number of particles in the simulation box, box 

volume, and temperature were kept constant during a simulation run [30]. In principle, 

the interaction between a pair of macroions in an electrolyte medium should be 

determined at constant chemical potential of small ions rather than at constant number of 

particles in the system [31,32]. As discussed previously [28], the error introduced by 

presuming a constant number of ions in the simulation system is small in comparison 

with the statistical uncertainty of the simulation. 

A colloid with uniform charge distribution was simulated as a hard sphere that bears a 

net charge in its center of mass. To account for non-uniform charge distribution, a 

colloidal particle was charged by six positive and four negative charged groups. The 

charged groups were placed within the hard-sphere colloid giving rise to a permanent 

dipole moment. Table 1 describes the configurations of the charged groups within the 

colloids for the different cases considered. Fig. 1 provides a schematic representation of a 

non-uniformly charged macroion simulated in this work. 

The conditions chosen in this work provide information about the effect of non-uniform 

charge distribution on the colloid-colloid pair potential of mean force between spherical 

particles with relatively strong dipolar interactions. Colloid charges and permanent 

dipoles considered in our simulations are chosen within a representative range typical for 

proteins in aqueous solution; for example, for α-chymotrypsin in aqueous solution the 
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dipole moment is 380D [17]). Colloid diameter was 20 Å. We studied solutions with 

monovalent or divalent electrolytes at concentrations 0.12 or 0.22 mol/l. Here electrolyte 

concentration refers to the added salt excluding the colloid counterions. Typical of a 

hydrated ion, ion diameter was set at 4 Å. 

For the salt concentrations considered here, the simulation box size, 118 Å, was 

sufficient to render interactions between colloids in different boxes insignificant. Table 2 

gives details for a typical simulation run. Periodic boundary conditions and Ewald 

summations  [30] were used in each computer experiment. 

To obtain the orientation ensemble average, in addition to the usual translational moves 

[28], either of the two interacting colloids was periodically randomly rotated around its 

center of mass. The attempted angle for each rotational move, as low as 0.02π, was such 

that the acceptance ratio was close to 50%. The remaining details of the simulations have 

been described elsewhere [27,28,33]. The code was validated by reproducing previously 

reported simulation data by Wu et al. for charged colloids with zero dipole moment [28]. 

Four million moves were used to equilibrate the system; up to forty million movements 

were required in the production phase. 

 

Simulation Results 

In this section, we report simulated results for colloids in electrolyte solutions. Colloid-

colloid forces and internal energies were computed at various conditions. In the next 

section, the simulation calculations are compared to results from analytical models. 

Fig. 2 shows colloid-colloid forces for +2e0 colloids with either zero or 95D dipole in 

0.12M monovalent electrolyte solution (cases A and B in Table 1). Fig. 2A is for the total 

colloid-colloid force, Eq.(1), while Figs. 2B and 2C are for the electrostatic (first two 

terms on the right-hand side of Eq.(1)) and the hard-sphere collision force (last term in 

Eq.(1)) respectively. In both cases, the total force is repulsive at all separations. As 

expected, at short colloid-colloid separations the repulsion is weaker for dipolar (case-B) 

colloids. The weaker repulsion is due both to the electrostatic and to the hard-sphere 

collision components of the colloid-colloid force. Comparing the components of the 

colloid-colloid force, the hard-sphere collision force (Fig. 2C) appears similar in the two 

cases. At very short separations, the hard-sphere collision force is slightly more attractive 
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for dipolar colloids, indicating a depletion of small ions in the region between the 

interacting charged dipolar colloids. However, the reduction in repulsion arises primarily 

from correlated dipole-dipole interactions, because the electrostatic component (Fig. 2B) 

is less repulsive at small colloid-colloid separations for dipolar colloids. 

Fig. 3 shows the total internal energy for the interacting pair of colloids considered in 

Fig. 2. The internal energy is strongly repulsive near contact and weakly attractive at 

bigger separations. Previously reported results [27] showed that the internal energy for 

+20e0 apolar colloids in 0.5M monovalent electrolyte solutions was repulsive at short 

colloid-colloid separations, whereas it was attractive at intermediate separations. A rather 

shallow energy minimum is revealed in the present calculation because the charge density 

we consider is significantly smaller. At decreasing colloid-colloid separations we show  

the internal energy to increase faster for colloids without dipoles because of favorable 

colloid-colloid orientations available to dipolar colloids 

Fig. 4 shows colloid-colloid forces computed for macroions with net charge +8e0 in 

0.12M monovalent electrolyte solution. Different symbols represent results obtained for 

colloids with different charge distributions. Colloids considered correspond to cases C, D, 

and E shown in Table 1. Their finite dipoles are, respectively, zero, 380, and 490D. 

While the total force (Fig. 4A) is repulsive at all colloid-colloid separations when the 

macroions have no dipole, it is attractive, at low separations, when macroions have a 

finite dipole moment. For distances larger than 1.5 times the colloid diameter, the colloid-

colloid force appears slightly repulsive for all cases considered here. The total force is 

dominated by electrostatic interactions. As shown in Fig. 4B, the general features of the 

electrostatic forces resemble those observed for the total force (Fig. 4A). At intermediate 

separations, the electrostatic interactions between colloidal particles with 380D dipole is 

more repulsive than that for charged particles without dipoles. This counter-intuitive 

result can be attributed to the depletion of small ions between the interacting colloids as 

indicated in the force profiles due to the hard-sphere-collision term (Fig. 4C). The 

depletion of small ions weakens the screening of charge-charge repulsion. For 490D 

colloids, the electrostatic interaction is dominated by charge-dipole and dipole-dipole 

attractions, except for distances exceeding ~1.4σC. The hard-sphere collision component 

(Fig. 4C), repulsive at all separations in the absence of dipoles, is attractive when the 
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interacting colloids have net dipoles, a consequence of the depletion of small ions 

between macroions as they tend to orient in a way minimizing the distances between 

oppositely charged groups on adjacent macro-particles. As discussed in our earlier work 

[33], we generally observe a depletion of simple ions in the region between oppositely 

charged macroion domains. 

Fig. 5 shows the total internal energy for the interacting pairs of colloids for the cases 

considered in Fig. 4. While the internal energy of dipole-free colloids increases with 

decreasing colloid-colloid separation, it decreases when the colloids have dipoles because 

of attractive energy associated with favorable colloid-colloid orientations. Because of the 

high dipole moments in these calculations, attractive dipolar interactions outweigh 

charge-charge repulsion at all separations. Previously reported results [27] showed that 

the internal energy for +20e0 apolar colloids in 0.5M monovalent electrolyte solutions is 

repulsive at short colloid-colloid separations, and attractive at intermediate separations. 

At the present conditions, the observed long-ranged attraction is weak because the 

charges on the colloids are significantly smaller. 

Figs. 6, 7 and 8 compare force profiles for pairs of +8e0 colloids without (Fig. 6) or 

with (Figs. 7 and 8) dipole moments in solutions of various ionic strengths. As expected, 

increasing the ionic strength reduces electrostatic repulsion between charged apolar 

colloids (Fig. 6B. When +8e0 apolar colloids are interacting in divalent electrolyte 

solutions of concentrations 0.12 or 0.22M, the colloid-colloid repulsion is weaker than 

that computed in monovalent electrolyte solutions of the same concentrations because 

stronger screening is provided by divalent ions. At the electrolyte concentrations here 

considered, simulation results do not reveal any significant influence of divalent 

electrolyte concentration on the colloid-colloid force. This result follows from excluded-

volume effects: finite-size ions are excluded from the region between the interacting 

colloids. The electrostatic component of the force (Fig. 6B) shows a weak colloid-colloid 

attraction at distances around ~1.3σC. in divalent electrolyte solutions, as noted in 

previous simulations [27,28,34,35]. However, the hard-sphere collision repulsion 

outweighs the electrostatic attraction, and the total force is essentially repulsive, within 

statistical uncertainty, at all separations. Evidently, the charge density considered in the 

present simulations is too low to give rise to net attraction due to ion-ion correlation 
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effects. In our simulations, the hard-sphere-collision component of the colloid-colloid 

force does not show any significant dependence upon solution ionic strength (Fig. 6C). 

For +8e0, 380D colloids (case D, Fig. 7), increasing monovalent electrolyte 

concentration appears to weaken colloid-colloid repulsion at distances beyond ~1.5 

σC.(Fig. 7A). Within computational accuracy, the electrostatic component of the colloid-

colloid force (Fig. 7B) does not depend visibly upon the bulk electrolyte concentration at 

reduced distances lower than 1.4. This result is probably related to the depletion of small 

ions between favorably oriented macroions [36]. Attractive collision force at small 

separations (Fig. 7C) confirms that the ion concentration between colloids facing each 

other’s oppositely charged domain remains relatively low. Hence, small ions do not 

screen the electrostatic colloid-colloid repulsion as much as the DLVO theory predicts. 

At reduced distances between 1.5 and 1.7 the hard-sphere collision force is more 

attractive at lower electrolyte concentrations. These results, clearly associated with 

excluded-volume effects of layering of simple ions, cannot be interpreted within the 

framework of DLVO and related theories. Integral-equation theory, augmented by dipole-

related interactions, is required to capture the segregation effect of simple ions between 

adjacent macro-particles (see, for example, ref. [36]). 

Fig. 8 shows the force profile between +8e0, 380D colloids (case-E in Table 1) in 

0.12M divalent electrolyte solutions. Because divalent electrolytes more effectively 

screen the electrostatic repulsion, the colloid-colloid force is more attractive than that 

simulated in monovalent electrolyte solutions. The force is strongly oscillating, even 

though the interaction is predominantly attractive. An oscillatory force was measured at 

close separations between mica surfaces in various solvents due to structuring of solvent 

layers [37-40]. Analogous oscillations observed in the present study follow from layering 

of electrolyte ions packed between the colloid spheres, further enhanced by strong ion-

ion correlations in divalent electrolytes [41]. At higher divalent electrolyte concentration 

(0.22M), the packing effects and concomitant force oscillations become more 

pronounced. Repulsive peaks in the force profile increase and the attractive well, 

significant at reduced colloid-colloid distance 1.3, becomes deeper at higher electrolyte 

concentration. In view of longer equilibration times required at higher electrolyte 
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concentrations, only some representative results are given for colloids in 0.22M divalent 

electrolyte solutions. 

The repulsive peak position (1.2σC) corresponds to a separation sufficient to 

accommodate one electrolyte ion between the two interacting colloids. At reduced 

distances above 1.2, the sign of the hard-sphere-collision force (Fig. 8C) is opposite to 

that of the electrostatic force (Fig. 8B). At reduced colloid-colloid distances below 1.2, 

the hard-sphere-collision force is attractive because of the osmotic effect, and because of 

the attractive electrostatic force between favorably oriented dipolar macroions. The two 

contributions result in strong colloid-colloid attraction at short separations. 

Fig. 9 shows the total internal energy for interacting pairs of +8e0 colloids in solutions 

of various ionic strengths. Figs. 9A and 9B are, respectively, for colloids with no dipole 

and colloids with 380D dipole (case-C and case-D colloids, see Table 1). At increasing 

monovalent electrolyte concentration, the internal energy depends only weakly on the salt 

concentration for charged colloids with no dipole moment. For charged apolar colloids in 

divalent electrolyte solutions, the internal energy is weakly attractive even at near-contact 

separations, whereas it is repulsive in monovalent electrolyte solution (Fig. 9A). For 

charged apolar colloids in 0.22M divalent electrolyte solution, the internal energy is 

weakly repulsive at intermediate separations, but remains attractive at short distances. 

However, results in divalent electrolyte solutions are affected by significant statistical 

uncertainty. 

For dipolar colloids in monovalent electrolyte solutions, the internal energy profile is 

independent of electrolyte concentration for reduced distances above 1.6, but at shorter 

distances the internal energy becomes somewhat less attractive with increasing 

electrolyte concentration, probably because of enhanced screening of the multi-polar 

attraction. 

In divalent electrolyte solutions, the internal energy for pairs of charged dipolar colloids 

(case D in Table 1) displays stronger oscillations indicating pronounced packing of finite-

size ions around the interacting colloids. However, the internal energy is strongly 

attractive at contact and at reduced colloid-colloid separations of about 1.2. 
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Comparison with Theory 
As discussed in earlier works [17,18,24,25,42], interactions between dipolar colloids or 

proteins can be approximately described in terms of electrostatically screened charge-

charge (q-q), angle-averaged charge-dipole (q-µ), and angle-averaged dipole-dipole (µ-µ) 

interactions. Typically, Boltzmann averages of each type of colloid-colloid interactions 

over the colloid-colloid orientations are first calculated separately [18,42]. Then, the 

different angle-averaged contributions are summed to obtain the colloid-colloid potential 

of mean force, W(d), as a function of the colloid-colloid separation d: 

( ) ( ) ( ) ( )dWdWdWdW qqq µµµ −−− ++=  .                                                                                     (3) 

In Eq.(3), Wq-q is the screened charge-charge repulsion, Wq-µ is the screened charge-dipole 

attraction, Wµ-µ is the screened dipole-dipole attraction. Within the Debye-Hückel 

approximation for charge and dipole screening effects [25], the individual terms are given 

by [17,25]: 
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In Eqs. (4-5), Si are screening factors given by: 
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Here εS is the permittivity of the colloid particle, assumed to be equal to that of the 

electrolyte medium. 

As pointed out by Lenhoff and coworkers [11], adding the distinct orientation-averaged 

terms could introduce deviations from the correct effective pair potential due to 

neglecting correlations between charge-dipole and dipole-dipole terms when both of the 

interacting particles carry a net charge together with a dipole. In this case, opposite 

colloid-colloid orientations are favored by charge-dipole and dipole-dipole interactions. 

Angle-averaged charge-dipole and dipole-dipole terms are therefore strongly non-

additive. Recently, we [26] proposed an approximate analytic expression for the potential 

of mean force between colloids characterized simultaneously by finite charge and finite 

dipole (see Fig. 1). We noted [26] that the potential of mean force between non-uniformly 

charged colloids, when dipole-related interactions are comparable to or exceed the 

thermal energy, cannot be computed by assuming a pair-wise sum of distinct orientation 

averages for charge-dipole and dipole-dipole interactions. Using a simple discrete-

orientation model, we obtained an approximate expression for the potential of mean force 

which exactly reproduces the correct behavior in weak and strong coupling limits, and 

appears appropriate for practical calculations. In this approximation, the orientation space 

of the two dipoles is discretized, with each dipole sampling only six principal directions. 

The model is applied to estimate the coupling correction, i.e. the difference between the 

total potential of mean force and a pairwise sum of uncoupled charge-dipole and dipole-

dipole contributions. Adding the perturbation term to the sum of distinct contributions 

from the continuous representation [25,42] gives[26]: 
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In Eq. (10), Wq-q is given in Eq. (4). The other terms are: 
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In Eqs. (11-13), Si are screening factors obtained by: 
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Below, we compare predictions of the two analytical models, [Eq.(3) and Eq.(10)], with 

our simulation results. In view of the shortcomings of DLVO-based models where simple 

ions are point charges and ion-ion correlations are ignored, these models cannot 

reproduce the details of colloid-colloid interactions at small separations. The deviations 

of both Eq.(3) and Eq.(10) from simulation results are further exacerbated in the presence 

of dipoles because the theory neglects coupling between charge and dipole screening 

effects. 

When the colloids carry a net charge but have no dipole, the two analytical models 

reduce to the DLVO approximation expressed by Eq.(4) [20]. Fig. 10 compares potentials 

of mean force from computer simulations with predictions of DLVO theory for zero polar 

+2e0 and +8e0 colloids in 0.12M monovalent electrolyte solutions. The theory reproduces 

the colloid-colloid potential of mean force for colloids with small charge (case A 

colloids), while it slightly over-estimates the repulsive potential of mean force for +8e0 
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colloids. Such discrepancies are not surprising as DLVO theory cannot always accurately 

describe short-distance behavior affected by ion-ion correlations [43]. Further, the finite-

size counter-ions can form densely packed micro-structured clouds between interacting 

colloids that may generate short-separation repulsive colloid-colloid interaction [37,38]. 

Fig. 11 compares the simulated colloid-colloid potential of mean force for +8e0, 380D 

and 490D colloids (cases D and E in Table 1) in 0.12M monovalent electrolyte solutions, 

with results obtained by both models considered here [Eq.(3) and Eq.(10)]. Neither model  

captures the strong colloid-colloid repulsion at intermediate separations because the 

analytic approximations used here are asymptotic expressions, valid at large separations, 

and ignore finite ion size, important at short colloid-colloid separations. Further, ion-ion 

correlations are not considered. For small separations, Eq.(3) gives a strong colloid-

colloid attraction that does not agree with simulation. Eq.(10), on the other hand, gives a 

colloid-colloid potential of mean force qualitatively similar to simulation results. The 

attractive part of the theoretical potential closely resembles simulation results for the 

490D case (case-E colloids in Table 1). 

Eq.(3) overestimates the colloid-colloid attraction because it assumes additivity of 

several separately angle-averaged electrostatic contributions that should not be treated as 

uncorrelated events. These results reaffirm our previous conclusion [26] that the 

additivity approximation cannot be applied to charged colloidal systems in electrolyte 

solutions when the colloidal particles simultaneously carry strong dipoles and strong 

charges. 

Fig. 12 shows simulated and predicted potentials of mean force for +8e0, zero-dipole 

and 380D colloids (case C and D in Table 1) in 0.12M divalent electrolyte solution. For 

apolar colloids, the theory strongly overestimates the repulsion between like charged 

estimates of screening effects lead to serious errors in multivalent electrolyte solutions. 

As a result, neither model captures the repulsive potential of mean force between dipolar 

colloids at intermediate separations. However, while Eq.(3) predicts colloid-colloid 

attraction at distances shorter than 1.5σC, Eq.(10) reproduces the colloids at small 

separations, probably because the shortcomings of Debye-Hückel qualitative features of 

the effective colloid-colloid potential of mean force, viz. a weak repulsion at reduced 

distances above 1.3, and an attraction at shorter separations. While approximate, Eq.(10) 
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represents the properties of charged colloidal suspensions much better than Eq.(3), also in 

divalent electrolyte solutions. 

 

 

Conclusions 
We report Monte Carlo simulations of electrostatic forces between charged dipolar 

colloid particles in electrolyte solutions containing ions of finite size. Colloids considered 

carry a net charge of either +2 or +8e0; they are characterized either by a zero or a finite 

dipole moment. The dipole moment is generated by displacing point charges within the 

colloid hard sphere. Colloid-colloid forces are computed in monovalent or divalent 

electrolyte solutions of various concentrations. 

For conditions considered in this work, while in monovalent electrolyte solutions the 

colloid-colloid force is repulsive when the colloids have no dipole, it can be strongly 

attractive when dipoles are present. The attraction has two causes: the direct charge-

dipole and dipole-dipole interaction, and depletion of electrolyte ions between favorably 

oriented dipolar colloidal particles. 

The colloid-colloid force computed in divalent electrolyte solution shows significant 

oscillations due to layering of electrolyte ions around the colloid molecules. Monovalent 

electrolyte ions are not sufficiently attracted to the colloids to show similar strong 

coordination around the interacting macroions. 

Potentials of mean force obtained from simulations are compared to results obtained by 

DLVO-related models. The screened charge-charge repulsive interaction is obtained from 

the original DLVO theory. Because of its inherent approximations, the DLVO theory 

provides only asymptotic expressions valid at large colloid-colloid separations. At the 

conditions of our present work, it provided a satisfactory description  of the interaction 

between apolar colloids surrounded by monovalent salt but overestimates the colloid-

colloid repulsion in the presence of divalent ions. 

In the additivity approximation, various colloid-colloid interactions (dipole-dipole and 

charge-dipole) are computed independently by appropriate Boltzmann-weighted angle 

averages and then summed to obtain the potential of mean force between colloids in 

electrolyte solutions. However, Bratko et al. [26] simultaneously angle-averaged dipole-
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dipole, and charge-dipole contributions to the potential of mean force. The effective 

colloid-colloid potential is obtained by suitable averages over representative relative 

colloid-colloid orientations, leading to significant improvement over results obtained 

from the additivity approximation. 
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Table 1: Charge position within the colloids for each case studied by simulation. 

 x / Å y / Å z / Å q / e0 
case A 0.00 0.00 0.00 +2 
µ=0D     
Q=+2e     
case B 0.00 0.00 7.00 -1 
µ=95D 0.00 0.00 -7.00 -1 
Q=+2e 0.00 4.95 4.95 -1 
 0.00 -4.95 4.95 -1 
 4.95 0.00 4.95 +1 
 -4.95 0.00 4.95 +1 
 4.95 0.00 -4.95 +1 
 -4.95 0.00 -4.95 +1 
 0.00 4.95 -4.95 +1 
 0.00 -4.95 -4.95 +1 
case C 0.00 0.00 0.00 +8 
µ=0D     
Q=+8e     
case D 0.00 0.00 7.00 -4 
µ=380D 0.00 0.00 -7.00 -4 
Q=+8e 0.00 4.95 4.95 -4 
 0.00 -4.95 4.95 -4 
 4.95 0.00 4.95 +4 
 -4.95 0.00 4.95 +4 
 4.95 0.00 -4.95 +4 
 -4.95 0.00 -4.95 +4 
 0.00 4.95 -4.95 +4 
 0.00 -4.95 -4.95 +4 
case E 0.00 0.00 9.00 -4 
µ=490D 0.00 0.00 -9.00 -4 
Q=+8e 0.00 6.36 6.36 -4 
 0.00 -6.36 6.36 -4 
 6.36 0.00 6.36 +4 
 -6.36 0.00 6.36 +4 
 6.36 0.00 -6.36 +4 
 -6.36 0.00 -6.36 +4 
 0.00 6.36 -6.36 +4 
 0.00 -6.36 -6.36 +4 
µ is the finite dipole moment of the macroion. 
Q is the finite charge of the macroion. 
x, y, and z are the coordinates, relative to the center of mass, of each charged group 
displaced within the macroion. 
q is the finite charge of the each charged group within the macroion. 
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Table 2: Details for a typical simulation run to determine the force between two charged, 

dipolar particles. 

 

Box size 118 Å 

Colloid diameter 20 Å 

Colloid net charge +8e0 

No. of counter ions 141 

Counter-ion charge -1 e0 

Counter-ion diameter 4 Å 

No. of co ions 125 

Co-ion charge +1 e0 

Co-ion diameter 4 Å 

Ionic strength 0.12M 

Temperature 298 K 

Dielectric constant 78.54 

Bjerrum length 7.13 Å 
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Figure captions 

Figure 1. Schematic representation of a charged dipolar colloid simulated in this work. 

On the left side, a simulated colloid is represented as a hard sphere with the system of 

Cartesian coordinates centered in its center of mass. Six positive (black dots) and four 

negative (white dots) charged groups are placed within the colloidal particle according to 

details given in Table 1. On the right side the macroion is represented as a hard sphere 

with a finite charge and a finite dipole moment in its center. The left-side representation 

corresponds to the macroion as simulated in the calculations presented here, while the 

right-side representation is used in analytical models. 

Figure 2. Simulated colloid-colloid reduced force as a function of reduced colloid-colloid 

separation for colloids with net charge +2e0 in 0.12M monovalent electrolyte solution. lB 

is Bjerrum length, and σC is colloid diameter. Fig. 2A shows the total colloid-colloid 

force (Ftot); 2B shows the electrostatic component of the total force (Fel), and Fig. 2C 

shows the hard-sphere-collision component (FHS). Full diamonds are for zero dipolar 

colloids (case A in Table 1); open diamonds are for dipolar colloids (case B). Lines are 

guides to the eye. 

Figure 3. Reduced total internal energy for a pair of interacting colloids as a function of 

reduced colloid-colloid separation. σC is colloid diameter. Full diamonds are for +2e0, 

zero dipolar colloids (case A in Table 1); empty diamonds are for 95D colloids (case B). 

Lines are guides to the eye. 

Figure 4. Simulated colloid-colloid reduced force as a function of reduced colloid-colloid 

separation for colloids with net charge +8e0 in 0.12M monovalent electrolyte solution. lB 

is Bjerrum length, and σC is colloid diameter. Fig. 4A shows the total colloid-colloid 

force (Ftot); 4B shows the electrostatic component of the total force (Fel), and 4C shows 

the hard-sphere-collision component (FHS). Open diamonds are for zero dipolar colloids; 

full diamonds are for 380D colloids; squares are for 490D colloids (colloids are type C, 

D, and E in Table 1, respectively). Lines are guides to the eye. 

Figure 5. Reduced total internal energy for a pair of interacting +8e0 colloids as a 

function of reduced colloid-colloid separation. σC is colloid diameter. Open diamonds are 

for zero dipolar (case C) colloids; full diamonds are for 380D colloids (case D); squares 

are for 490D colloids (case E). 
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Figure 6. Simulated colloid-colloid reduced force as a function of reduced colloid-colloid 

separation for +8e0 zero dipolar colloids (case C) in electrolyte solution of various ionic 

strengths. lB is Bjerrum length, and σC is colloid diameter. Fig. 6A shows the total 

colloid-colloid force (Ftot); Fig. 6B shows the electrostatic component of the total force 

(Fel); and Fig. 6C shows the hard-sphere-collision component (FHS). Open symbols are 

for colloids in a 0.12M electrolyte solution; full symbols are for colloids in a 0.22M 

electrolyte solution. Diamonds are for colloids interacting in monovalent electrolyte 

solutions; squares are for colloids interacting in divalent electrolyte solutions. Lines are 

guides to the eye. 

Figure 7. Simulated colloid-colloid reduced force as a function of reduced colloid-colloid 

separation for +8e0, 380D colloids (case D) in monovalent electrolyte solution. lB is 

Bjerrum length, and σC is colloid diameter. Fig. 7A shows the total colloid-colloid force 

(Ftot); Fig. 7B shows the electrostatic component of the total force (Fel), and Fig. 7C 

shows the hard-sphere-collision component (FHS). Open diamonds are for colloids in a 

0.12M electrolyte solution, full diamonds are for colloids in a 0.22M electrolyte solution. 

Lines are guides to the eye. 

Figure 8. Same as Fig. 7 for colloids interacting in divalent electrolyte solutions. 

Figure 9. Reduced total internal energy for a pair of interacting +8e0 colloids as a 

function of reduced colloid-colloid separation. σC is colloid diameter. Figs. 9A and 9B 

are for zero dipolar and 380D colloids, respectively (cases C and D in table 1). Open 

symbols are for colloids interacting in 0.12M electrolyte solution, full symbols are for 

colloids interacting in 0.22M electrolyte solutions. Diamonds are for monovalent 

electrolyte solutions, squares are for divalent electrolyte solutions. Lines are guides to the 

eye. 

Figure 10. Colloid-colloid potential of mean force from simulations (points) or from the 

DLVO theory (broken curves). Zero dipolar +2e0 (case A) (open symbols) or +8e0 (case 

C) (full symbols) colloids in 0.12M monovalent electrolyte solutions. σC is colloid 

diameter. 

Figure 11. Colloid-colloid potential of mean force from simulations (points), and from 

Eq.(3) (dashed curves), or from Eq.(10) (solid curves). Fig. 11A is for +8e0, 380D 
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colloids (case D in Table 1). Fig. 11B is for +8e0, 490D colloids (case E), all in 

monovalent 0.12M electrolyte solution. σC is colloid diameter. 

Figure 12. Colloid-colloid potential of mean force simulated (points) and calculated by 

theoretical models. Fig. 12A is for +8e0 zero dipolar colloids (case C in Table 1); broken 

line is from DLVO theory; Fig. 12B is for +8e0, 380D colloids (case D); dashed line is 

from Eq.(3), and solid line is from Eq.(10). Colloids are simulated in divalent 0.12M 

electrolyte solution. σC is colloid diameter. 
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Figure 2. Striolo et al., ‘Forces Between Aqueous …’ 
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Figure 4. Striolo et al., ‘Forces Between Aqueous …’ 
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Figure 5. Striolo et al., ‘Forces Between Aqueous …’ 
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Figure 6. Striolo et al., ‘Forces Between Aqueous …’ 
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Figure 7. Striolo et al., ‘Forces Between Aqueous …’ 
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Figure 8. Striolo et al., ‘Forces Between Aqueous …’ 
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	Canonical NVT Monte Carlo simulation was used following the algorithm proposed in our earlier works. [27,28]. Macroions and electrolytes are simulated using the primitive model for ionic solutions [29], augmented by a prescribed distribution of charged g
	The average force F between two aqueous colloids surrounded by small ions comprises three contributions:
	.                                                          (1)
	Angular brackets denote ensemble averages, d is the separation between two colloids, and riC is the distance between a small ion i and a colloid. Subscript C denotes a colloid. (ij is the pair potential between ionic particles i and j separated by cente
	,                                                                           (2)
	where (, (0, (i and qi are respectively relative permittivity, permittivity of vacuum ((0=8.854 10-12 As/Vm), diameter and charge of species i.
	In Eq. (1), the first term on the right-hand side is the electrostatic force between the two interacting colloids. The second term accounts for electrostatic forces exerted on the colloids by the electrolyte ions. As particles cannot overlap, this term
	According to the NVT ensemble, the number of particles in the simulation box, box volume, and temperature were kept constant during a simulation run [30]. In principle, the interaction between a pair of macroions in an electrolyte medium should be determ
	A colloid with uniform charge distribution was simulated as a hard sphere that bears a net charge in its center of mass. To account for non-uniform charge distribution, a colloidal particle was charged by six positive and four negative charged groups. Th
	The conditions chosen in this work provide information about the effect of non-uniform charge distribution on the colloid-colloid pair potential of mean force between spherical particles with relatively strong dipolar interactions. Colloid charges and pe
	For the salt concentrations considered here, the 
	To obtain the orientation ensemble average, in addition to the usual translational moves [28], either of the two interacting colloids was periodically randomly rotated around its center of mass. The attempted angle for each rotational move, as low as 0.0
	Simulation Results
	In this section, we report simulated results for colloids in electrolyte solutions. Colloid-colloid forces and internal energies were computed at various conditions. In the next section, the simulation calculations are compared to results from analytical
	Fig. 2 shows colloid-colloid forces for +2e0 colloids with either zero or 95D dipole in 0.12M monovalent electrolyte solution (cases A and B in Table 1). Fig. 2A is for the total colloid-colloid force, Eq.(1), while Figs. 2B and 2C are for the electr
	Fig. 3 shows the total internal energy for the interacting pair of colloids considered in Fig. 2. The internal energy is strongly repulsive near contact and weakly attractive at bigger separations. Previously reported results [27] showed that the interna
	Fig. 4 shows colloid-colloid forces computed for macroions with net charge +8e0 in 0.12M monovalent electrolyte solution. Different symbols represent results obtained for colloids with different charge distributions. Colloids considered correspond to cas
	Fig. 5 shows the total internal energy for the interacting pairs of colloids for the cases considered in Fig. 4. While the internal energy of dipole-free colloids increases with decreasing colloid-colloid separation, it decreases when the colloids have d
	Figs. 6, 7 and 8 compare force profiles for pairs of +8e0 colloids without (Fig. 6) or with (Figs. 7 and 8) dipole moments in solutions of various ionic strengths. As expected, increasing the ionic strength reduces electrostatic repulsion between cha
	For +8e0, 380D colloids (case D, Fig. 7), increasing monovalent electrolyte concentration appears to weaken colloid-colloid repulsion at distances beyond ~1.5 (C.(Fig. 7A). Within computational accuracy, the electrostatic component of the colloid-co
	Fig. 8 shows the force profile between +8e0, 380D colloids (case-E in Table 1) in 0.12M divalent electrolyte solutions. Because divalent electrolytes more effectively screen the electrostatic repulsion, the colloid-colloid force is more attractive than
	The repulsive peak position (1.2(C) corresponds to a separation sufficient to accommodate one electrolyte ion between the two interacting colloids. At reduced distances above 1.2, the sign of the hard-sphere-collision force (Fig. 8C) is opposite to 
	Fig. 9 shows the total internal energy for interacting pairs of +8e0 colloids in solutions of various ionic strengths. Figs. 9A and 9B are, respectively, for colloids with no dipole and colloids with 380D dipole (case-C and case-D colloids, see Table 1
	For dipolar colloids in monovalent electrolyte solutions, the internal energy profile is independent of electrolyte concentration for reduced distances above 1.6, but at shorter distances the internal energy becomes somewhat less attractive with increasi
	In divalent electrolyte solutions, the internal energy for pairs of charged dipolar colloids (case D in Table 1) displays stronger oscillations indicating pronounced packing of finite-size ions around the interacting colloids. However, the internal ene
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	Table 1: Charge position within the colloids for each case studied by simulation.
	x / Å
	y / Å
	z / Å
	q / e0
	case A
	0.00
	0.00
	0.00
	+2
	(=0D
	Q=+2e
	case B
	0.00
	0.00
	7.00
	-1
	(=95D
	0.00
	0.00
	-7.00
	-1
	Q=+2e
	0.00
	4.95
	4.95
	-1
	0.00
	-4.95
	4.95
	-1
	4.95
	0.00
	4.95
	+1
	-4.95
	0.00
	4.95
	+1
	4.95
	0.00
	-4.95
	+1
	-4.95
	0.00
	-4.95
	+1
	0.00
	4.95
	-4.95
	+1
	0.00
	-4.95
	-4.95
	+1
	case C
	0.00
	0.00
	0.00
	+8
	(=0D
	Q=+8e
	case D
	0.00
	0.00
	7.00
	-4
	(=380D
	0.00
	0.00
	-7.00
	-4
	Q=+8e
	0.00
	4.95
	4.95
	-4
	0.00
	-4.95
	4.95
	-4
	4.95
	0.00
	4.95
	+4
	-4.95
	0.00
	4.95
	+4
	4.95
	0.00
	-4.95
	+4
	-4.95
	0.00
	-4.95
	+4
	0.00
	4.95
	-4.95
	+4
	0.00
	-4.95
	-4.95
	+4
	case E
	0.00
	0.00
	9.00
	-4
	(=490D
	0.00
	0.00
	-9.00
	-4
	Q=+8e
	0.00
	6.36
	6.36
	-4
	0.00
	-6.36
	6.36
	-4
	6.36
	0.00
	6.36
	+4
	-6.36
	0.00
	6.36
	+4
	6.36
	0.00
	-6.36
	+4
	-6.36
	0.00
	-6.36
	+4
	0.00
	6.36
	-6.36
	+4
	0.00
	-6.36
	-6.36
	+4
	( is the finite dipole moment of the macroion.
	Q is the finite charge of the macroion.
	x, y, and z are the coordinates, relative to the center of mass, of each charged group displaced within the macroion.
	q is the finite charge of the each charged group within the macroion.
	Table 2: Details for a typical simulation run to determine the force between two charged, dipolar particles.
	Box size
	118 Å
	Colloid diameter
	20 Å
	Colloid net charge
	+8e0
	No. of counter ions
	141
	Counter-ion charge
	-1 e0
	Counter-ion diameter
	4 Å
	No. of co ions
	125
	Co-ion charge
	+1 e0
	Co-ion diameter
	4 Å
	Ionic strength
	0.12M
	Temperature
	298 K
	Dielectric constant
	78.54
	Bjerrum length
	7.13 Å

